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Abstract

The hierarchical reference theory of fluids (HRT) combines a first-principles descrip-

tion of the system from the knowledge of the microscopic interaction with some of

the basic concepts of the renormalization group. The application of HRT to binary

mixtures has provided a theoretical justification of the critical behavior predicted by

the phenomenological approach. Moreover, the reason for the strong crossovers that

make it difficult to detect experimentally the asymptotic critical regime has been at-

tributed to the competition between two different fixed points. On the basis of this

analysis, the most favorable conditions that lead to an enhancement of the asymp-

totic region are identified: mixtures close to a change in the topology of the phase

diagram are good candidates for the direct experimental observation of features like

the renormalization of the critical exponents or the weak divergence of the isothermal

compressibility. This theory gives information not only on critical phenomena but it

is able to treat the full phase diagram in the fluid region and the static correlation

functions at long as well as at short distances. Some predictions for the phase diagram

and the structure factors of an argon-xenon mixture are shown.

KEY WORDS: argon-xenon mixture; binary mixtures; critical behavior; fixed points;

liquid state theory; renormalization group.



Compared to the degree of accuracy achieved for simple fluids, the theoretical de-

scription of binary mixtures still appears to be somewhat rough. Actually, the study

of the thermodynamics of mixtures largely rests upon van der Waals-like mean field

theories which, although able to give an overall picture of the different kinds of phase

diagram and topologies of the critical lines [1], are nevertheless quantitatively in-

adequate. Moreover, such approaches cannot satisfactorily deal with the universal

features of the critical behavior; this issue has instead been addressed in the context

of a phenomenological theory [2], which assumes that the universality class of critical

phenomena in mixtures is Ising-like as in one component fluids, but the “thermal”

and the “magnetic” scaling fields are analytic functions of the temperature and of the

chemical potential of the components. This ansatz rigorously holds in some decorated

lattice models of mixtures [3], and is believed to be true for real mixtures as well. On

the other hand, some of its predictions have not been clearly proved experimentally,

especially when it comes to subtle features like the so-called renormalization of the

critical exponents by the quantity 1/(1 − α), α being the critical exponent of the

specific heat at constant volume of the pure fluid. In fact, the experimental results [4]

on criticality in mixtures appear to be affected by strong crossovers, which make it

difficult to detect the true asymptotic behavior of the observables.

In order to achieve a better understanding of critical phenomena and phase tran-

sitions in binary mixtures it is therefore necessary to develop a theory able to go

beyond both the mean field approximation and the phenomenological approach. The

hierarchical reference theory (HRT) [5, 6] is a natural candidate to accomplish this

goal, since it provides a systematic way to include fluctuations of longer and longer

wavelengths on top of mean field theory reproducing the basic structure and results

of the renormalization group approach. At the same time, being a microscopic the-

ory based on the interparticle potential, it allows the quantitative evaluation of the

thermodynamic and structural properties of the system. It has already been shown
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that in the case of a one-component fluid HRT indeed yields a unified treatment over

the whole phase plane: in fact, its accuracy in the dense regime is comparable with

that of the most successful conventional theories, but on the other hand the critical

behavior and the phase diagram are described in a much more realistic way [7]. Here

we consider a binary mixture of two different species 1 and 2, each made up of spher-

ical particles subject to a two-body interaction. The pair potential vij(r) is then a

function both of the mutual position r and of the species of the particles, which are

specified by the couple of two-valued indexes i, j. Following a procedure of common

use in liquid state theories [8], it is assumed that vij(r) consists in the sum of a short-

ranged, repulsive contribution vR
ij(r) accounting for the excluded volume effect, and

a longer-ranged, attractive part wij(r). We refer to the system interacting via the

sole potential vR
ij(r) as the reference system; its properties are considered as known,

for instance by mapping it into a mixture of hard spheres. In the present description

the phase separation depends entirely on the attractive interaction wij(r); it is not

our purpose to deal with the entropic-driven phase transitions that may appear in a

mixture of particles with purely repulsive interaction.

The basic idea of HRT is to build up the attractive interaction by gradually in-

troducing in the system its Fourier components of increasing wavelength. Physically,

this procedure corresponds to the gradual inclusion of fluctuations starting from large

lengthscales. If we define Q as the lowest wavevector at which fluctuations are taken

into account, the exact evolution equation governing the change in the free energy AQ

due to fluctuations on a scale k ∈ (Q− dQ,Q) reads [9]:

∂

∂Q

(
βAQ
V

)
=

1

4π2
log det

[
1 + βC−1

Q (Q)w̃(Q)
]
, (1)

where the Q→∞ limit corresponds to mean field theory while at Q = 0 fluctuations

over all lengthscales have been included. Here β is the inverse temperature, V is the

volume, and both CQ(k) and w̃(k) are 2 × 2 symmetric matrices representing the

Fourier transforms of the direct correlation function and of the attractive part of the
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potential respectively.

Clearly, Eq. (1) is not closed: in fact, it is the first equation of an infinite hierarchy

involving the correlation functions of higher and higher order. However, as it has

already been shown for a one-component fluid [7], a successful approximation scheme

is already obtained if one does not go any further than Eq. (1), and supplements it

with a suitable approximate equation relating the direct correlation function CQ(k)

to the free energy AQ. Our basic assumption, and actually the only approximation

in the theory, is the well-known Ornstein Zernike ansatz, i.e. the requirement that

CQ(k) has always the same range as the potential, so that it is an analytic function of

k even at the critical point:

CQij (k) = cR
ij(k)− βλijw̃ij(k) , (2)

Here, cR
ij(k) is the direct correlation function of the reference system in Fourier space

and λij is a function of the thermodynamic state such that the (exact) compressibility

sum rule is satisfied:

CQij (k = 0) =
∂2

∂ρi∂ρj

(
−
βAQ
V

)
, (3)

where ρi is the number density of the species i. Eq. (1) becomes then a closed partial

differential equation for AQ which must be solved numerically. However, in the long

wavelength limit (i.e. for Q→ 0) and close to a critical point, this equation simplifies

allowing for analytic investigation. In fact, by suitably rescaling the densities and the

free energy, Eq. (1) can then be cast in a universal form, which naturally yields a RG

description of criticality in terms of flows of the rescaled free energy and fixed-points

solutions. The fixed point scenario that emerges from this study is much richer than

for the one-component fluid, and entails a number of interesting consequences [9]: first

of all, it can be shown that in mixtures the fluctuations do not behave isotropically

in the ρ1, ρ2 plane. Instead, a strong fluctuating field ψ and a weakly fluctuating

one ϕ appear. The direction of the strong fluctuation specifies how the densities

ρ1, ρ2 of the components, or equivalently the total density ρ = ρ1 + ρ2 and the
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concentration x = ρ2/(ρ1 + ρ2), are weighted in the order parameter of the transition.

Specifically, one has ψ = δρ cos θ+ρδx sinθ, where the angle θ is related to measurable

thermodynamic quantities like the partial molar volumes on the critical lines [10] or

the differences in molar volume and concentration of the coexisting phases close to

a critical point [11]. To first order in a dimensionality expansion in the parameter

ε = 4 − d (d being the dimension of the system), the RG flow can be studied by

expanding the rescaled free energy H in powers of the fields ψ, ϕ and by writing

down the ordinary differential equations for the evolution of the expansion coefficients

resulting from Eq. (1). In the even subspace with respect to the field ψ, to which all

the fixed points belong, the minimal expression for H accounting for all the relevant

operators is:

H(ψ, ϕ) = rψ2 + g2ϕ2 + uψ4 + wψ2ϕ . (4)

At the most stable fixed point all the coefficients in Eq. (4) are non-vanishing, so

that strong and weak fluctuations are coupled through a universal coefficient w∗.

We refer to this as the two-components (TC) fixed point H∗TC. However, other fixed

points are found: in particular, an unstable one-component (OC) fixed point H∗OC

exists, whose structure is again that of Eq. (4), but does not contain the field-mixing

term in ψ2ϕ. Although both H∗TC and H∗OC give rise to a critical behavior in the Ising

universality class, the presence of the field mixing in the stable fixed point H∗TC induces

several important features: in fact, close to H∗TC the compressibility diverges both

along the strong and the weak direction of fluctuation, and the critical exponents are

renormalized with respect to the Ising ones, in agreement with the predictions of the

phenomenological theory. On the other hand, the behavior observed experimentally

is more adequately described by the unstable fixed point H∗OC , which gives a non-

divergent compressibility and unrenormalized exponents along the strong direction of

fluctuation. Unless the effective parameter w is exactly zero at the critical point, H∗TC

will eventually prevail in the asymptotic regime. However, even if w is different from
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zero, the reduced temperature t = (T − Tc)/Tc below which the system experiences

the attraction of H∗TC is usually quite small and extremely sensitive to the actual

value of the mixing parameter w: in fact the reduced crossover temperature t× can be

estimated as t× ∼ (w/w∗)2/α, where the specific heat exponent α is equal to ' 0.12.

For the asymptotic critical behavior to become experimentally detectable, it is then

crucial to determine which conditions allow for an increase of the parameter w/w∗.

By unfolding the rescaling that links the physical free energy to the rescaled form (4),

this quantity can be expressed in terms of a purely thermodynamic contribution wth

and a “fluctuation” contribution wfl which contains the range of the interactions [12].

We have investigated the magnitude of this mixing parameter in mixtures of rare

gases, which can be reliably modeled in terms of Lennard-Jones potentials. For a

given interaction, the thermodynamic contribution accounts for the most important

features of w/w∗. Along the high-density part of the critical lines, where the transition

is mainly of the mixing-demixing type, this appears to be everywhere small, and the

resulting crossover temperature is definitely beyond the reach of the experiments. On

the other hand, in the low-density region of the phase diagram the mixing ratio is

considerably enhanced whenever a critical line gets close to a stability limit. This

condition can be obviously met at a critical endpoint, where the stability limit is

exactly reached, but it can be satisfied also close to a change of topology of the

phase diagram between the so-called class II and class III [1], since on the boundary

between these classes one would have two critical lines intersecting in a point of

marginal stability. Such a change of topology can be approached for instance in

some mixtures of CO2 or CHF3 with hydrocarbons as the length of the hydrocarbon

increases ([1, 13]). Among the binary mixtures of noble gases, the most favorable

situation in this respect is found for the argon-xenon system [14] which we have

analyzed in some detail. Unfortunately we are not aware of a precise determination

of the critical properties in this mixture and therefore we cannot compare our results
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with experimental data.

The projection of the critical line in the density-concentration plane is shown

in Fig. 1. Both the mean field approximation (dotted line) and the results of the

numerical integration of Eq. (1) are drawn. The critical temperature, not shown

in the figure, drops monotonically by increasing Argon concentration. The arrows

identify the direction of the order parameter in the density-concentration plane: the

previously introduced mixing angle θ coincides with the angle between the direction

of the arrow and the density axis. The mean field critical line joins the two critical

points of the pure species and can be therefore interpreted as the locus of liquid-vapor

critical points. A clear effect which emerges from the comparison between mean field

and HRT results is the enhancement of the hump in the critical line in the region

of small Xenon concentration, i.e. where the order parameter has an appreciable

component also along the concentration axis. This feature can be interpreted as

the tendency towards a change in topology in the phase diagram of this mixture

leading to an enhancement of concentration fluctuations along the liquid vapor critical

curve. Therefore we expect that in this region of the phase diagram the mixture gets

close to the marginal stability limit leading to strong field mixing and experimentally

detectable Fisher renormalization of critical exponents. In fact a mean field estimate of

the reduced crossover temperature shows a sharp enhancement in this region attaining

values of the order of t× ∼ 10−3 [12].

In order to perform the present computations we used a set of Lennard-Jones

parameters [14] obtained from measures on transport properties. These values do

not accurately reproduce the critical points of the pure species which are in fact

overestimated by more than 10%. Moreover the numerical integration of the partial

differential equation (1) has been performed on a rather coarse mesh in the density-

concentration plane which does not allow the precise determination of the critical

parameters. Due to these limitations, on the basis of the present results we cannot
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rule out the possibility that for such a mixture the fluctuations might even induce a

change in the topology of the critical lines with respect to the mean field prediction.

This is an interesting issue, which will be investigated in the future, by means of a

more efficient algorithm for the numerical solution of Eq. (1).

An isothermal section of the pressure-concentration plane is shown in Fig. 2a

where we marked by squares the states within the coexistence region. Interestingly,

the numerical solution satisfies the thermodynamic stability constraint which requires

the collapse of these points on the same curve when plotted in the pressure-chemical

potential plane (Fig. 2b).

Finally, the density-density, concentration-concentration and density-concentration

structure factors are shown in Fig. 3 for a state (marked by an asterisk in Fig. 1)

close to a point along the critical line. We used the standard notation introduced by

Bathia and Thornton [15]:

SNN(k) = c1S11(k) + c2S22(k) + 2
√
c1c2S12(k) (5)

Scc(k) = c1c2 [c2S11(k) + c1S22(k)− 2
√
c1c2S12(k)] (6)

SNc(k) = c1c2

[
S11(k)− S22(k) +

(c2 − c1)
√
c1c2

S12(k)

]
(7)

where ci = ρi/ρ and

Sij(k) = δij +
√
ρiρj

∫
dr eik·r [gij(r)− 1] , (8)

where the radial distribution function gij(r) measures correlations between species i

and j. Fig. 3 shows that density fluctuations are rather similar to the case of one com-

ponent fluids near the critical point: SNN(k) is large at small k because of the presence

of strong density fluctuations near phase separation and at the same time, it reveals

the presence of short range structure through the oscillations at larger wavevector.

On the other hand, Scc(k) is remarkably structureless but show an enhancement at

small k which signals the increase of concentration fluctuations.

7



The example we have briefly discussed shows the possibility to obtain phase dia-

grams and transition lines in mixtures of simple fluids where density and concentration

fluctuations are properly taken into account. In particular we focused our attention on

the observable effects of field mixing near phase transitions. The unexpected growth

of concentration fluctuations along a liquid-vapor critical line is the consequence of a

non negligible component of the order parameter along the concentration axis. Ac-

cording to our model calculations, such an effect should be particularly visible in an

Argon-Xenon mixture at low Xenon concentration and should be experimentally de-

tectable both by accurate PVT measures and by scattering experiments. Near the

critical point, a marked crossover towards the renormalized values of the critical expo-

nents is also expected due to the proximity to the stability limit in this region of the

phase diagram. Likely, the same effects might be more easily observed in mixtures of

hydrocarbons or of polar molecules but the model we have studied cannot be directly

applied to such systems.
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FIGURE CAPTIONS

Fig. 1 Density - concentration projection of the liquid-vapor critical line in an Ar-

Xe mixture. Dotted line: mean field theory. Circles: HRT results. The arrow

represents the direction of the order parameter. The open circle marks the

critical point of the isothermal section shown in Fig. 2. The asterisk identifies

the (ρ, x) projection of the thermodynamic state which Fig. 3 refers to.

Fig. 2 (a): Isothermal section of the concentration - pressure plane. Full symbols

show the thermodynamic states inside the coexistence region. (b): Collapse of

points of panel (a) when plotted in the chemical potential - pressure plane.

Fig. 3 Density (SNN (k)), concentration (Scc(k)) and cross (SNc(k)) structure factors

for the state shown in Fig. 1.

10








